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”% Motivation

* Multiobjective optimization methods are tools to support decision-making.

* These tools can help decision makers find solutions to problems with multiple conflicting objective functions
and no clear single optimum.

* Because of the large amount of optimal solutions, preferences can be utilized in some methods to guide the
optimization process.

* Especially in so-called interactive multiobjective optimization methods, the decision maker can iteratively
explore the set of optimal solutions, which allows them to learn about the available solutions and the feasibility
of their preferences.
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”% But how clear is such a process to a decision maker?

What should preferences
I say? Maybe...

O
O

*Optimization
method
noises*

ﬁ solution

But why ' ?
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”% Background: concepts

Problem definition

minimize F(x) = (f1(x), fa(x), ..., fx(x))

s.t. x€ S

Central concepts
L2 A f2
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’Lf Background: scalarization

Scalarization
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Background: evolutionary methods
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A Background: interactive methods

Preferences

N L ]
Iterative Interactive

process method
~—_ e

Solution
candidates

Exploration Learning

Miettinen, K. 1999. Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.
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”% Background: explainable artificial intelligence

I have no idea what is
happening...

Newest and coolest LLM

Black-box

It will rain frogs
I need scissors! 61! tomorrow with a side of
scallions!

Kamath, U. & Liu, J. 2021. Explainable artificial intelligence: An introduction to interpretable machine leaming. Springer. JYU SINCE 1863. 10.7.2024 10




Real-life example

You
what is alkumalja in english

ChatGPT

"Alkumalja" is a Finnish word that translates to "starter battery" or "car battery" in English. It refers to the

battery used to start a vehicle's engine.

S

"alkumalja" in Finnish means "opening toast"
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What about applying the concept of expainability to
interactive multiobjective optimization?




I’ Connection between preferences and solutions
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Objective 1
Misitano, G., Afsar, B., Larraga, G., & Miettinen, K. (2022). Towards explainable interactive multiobjective optimization: R-XIMO. Autonomous Agents and Multi-Agent Systems, 36(2), 43.
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I’A Connection between preferences and solutions
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Abstract

In interactive multiobjective optimization methods, the preferences of a decision maker are
incorporated in a solution process to find solutions of interest for problems with multi-
ple conflicting objectives. Since multiple solutions exist for these problems with various
trade-offs, preferences are crucial to identify the best solution(s). However, it is not nec-
essarily clear to the decision maker how the preferences lead to particular solutions and,
by introducing explanations to interactive multiobjective optimization methods, we pro-
mote a novel paradigm of explainable interactive multiobjective optimization. As a proof of
concept, we introduce a new method, R-XIMO, which provides explanations to a decision

maker for reference point based interactive methods. We utilize concepts of explainable
netifaAial Jamtallicaman amAd CITAD (Chamlarr A Aditisra AavTDNasmatinmc rralinaes D VIARAM allaseon

Misitano, G., Afsar, B., Larraga, G., & Miettinen, K. (2022). Towards explainable interactive multiobjective optimization: R-XIMO. Autonomous Agents and Multi-Agent Systems, 36(2), 43. JYU SINCE 1863. 10.7.2024 15



I’M Describing preferred solutions in a population-based
8 method
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Misitano, G. (2024). Exploring the Explainable Aspects and Performance of a Leamable Evolutionary Multiobjective Optimization Method. ACM Transactions on Evolutionary Leaming, 4(1), 1-39.
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I’M Describing preferred solutions in a population-based
8 method

Made possible by the XLEMOO framework!

<€--...... Described the variables of the
@ /-Ru|e e “"ttreees solutions with the best fitness,
ﬂ” insights about Sz:ﬁ?oﬁgric;rrzgwlgs e.g., the mos:t preferred
optimal solutions solutions
7 LEMOO method with an
DM provides a > interpretable ML model
reference point "-......

.4 i ...-......
: * Skope-rules
: {T}’ V\ used
:: Solution with best
. fitness Final population of
:' solutions

Can support technically inclined
decision makers, e.g., engineers in
design problems

Misitano, G. (2024). Exploring the Explainable Aspects and Performance of a Leamable Evolutionary Multiobjective Optimization Method. ACM Transactions on Evolutionary Leaming, 4(1), 1-39.

Nicolas Goix, Vighnesh Birodkar, Florian Gardin, Jean-Matthieu Schertzer, Hoebin Jeong, Manoj Kumar, Alexandre Gramfort, Tim Staley, Tom Dupré la Tour, Boyuan Deng, C, Fabian Pedregosa, JYU SINCE 1863 10.7.2024 17
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wse  EXploring the Explainable Aspects and Performance of a
Learnable Evolutionary Multiobjective Optimization

Method

GIOVANNI MISITANO, University of Jyviskyl4, Finland

Multiobjective optimization problems have multiple conflicting objective functions to be optimized simulta-
neously. The solutions to these problems are known as Pareto optimal solutions, which are mathematically
incomparable. Thus, a decision maker must be employed to provide preferences to find the most preferred
solution. However, decision makers often lack support in providing preferences and insights in exploring the
solutions available.

We explore the combination of learnable evolutionary models with interactive indicator-based evolution-
ary multiobjective optimization to create a learnable evolutionary multiobjective optimization method. Fur-
thermore, we leverage interpretable machine learning to provide decision makers with potential insights
about the problem being solved in the form of rule-based explanations. In fact, we show that a learnable
evolutionary multiobjective optimization method can offer advantages in the search for solutions to a multi-
objective optimization problem. We also provide an open source software framework for other researchers
to implement and explore our ideas in their own works.

Our work is a step toward establishing a new paradigm in the field on multiobjective optimization: explain-
able and learnable multiobjective optimization. We take the first steps toward this new research direction and
provide other researchers and practitioners with necessary tools and ideas to further contribute to this field.

Misitano, G. (2024). Exploring the Explainable Aspects and Performance of a Leamable Evolutionary Multiobjective Optimization Method. ACM Transactions on Evolutionary Leaming, 4(1), 1-39. JYU SINCE 1863. 10.7.2024 19




'8 Some other approaches to integrating explainability with
interactive multiobjective optimization methods

« Shavarani, S. M., Lépez-lbanez, M., Allmendinger, R., & Knowles, J. (2023). An Interactive Decision Tree-Based Evolutionary Multi-
objective Algorithm. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.),
Evolutionary Multi-Criterion Optimization (Vol. 13970, pp. 620-634). Springer Nature Switzerland. https://doi.org/10.1007/978-3-
031-27250-9 44

* Lin, P.,, Zhang, L., & Tiong, R. L. K. (2023). Multi-objective robust optimization for enhanced safety in large-diameter tunnel
construction with interactive and explainable Al. Reliability Engineering & System Safety, 234, 109172.
https://doi.org/10.1016/j.ress.2023.109172

« Corrente, S., Greco, S., Matarazzo, B., & Stowinski, R. (2024). Explainable interactive evolutionary multiobjective optimization.
Omega, 122, 102925. https://doi.org/10.1016/j.omega.2023.102925

 Wang, J., Liu, Y., Sun, J,, Jiang, Y., & Sun, C. (2016). Diversified Recommendation Incorporating Item Content Information Based on
MOEA/D. 2016 49th Hawaii International Conference on System Sciences (HICSS), 688-696. https://doi.org/10.1109/HICSS.2016.91

» Zhan, H., & Cao, Y. (2019). Relationship Explainable Multi-objective Optimization Via Vector Value Function Based Reinforcement Learning
(arXiv:1910.01919). arXiv. http://arxiv.org/abs/1910.01919
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* Integrating, or enhancing, interactive multiobjective optimization methods with explainability has many
promising advantages.

* Explainability can aid the decision maker in providing preferences and understanding the connection between
preferences and computed solutions.

* Explainability can help convey additional information about solutions, especially those that are close to the
preferences of the decision maker.

* Explainability can make interactive methods more transparent tools, which is desirable from a decision-support
perspective.

* There are many areas in multiobjective optimization where explainability can address different issues, and
improve the decision-support capabilities of different methods.
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% To support your endeavors

 DESDEO has played an important supporting role in enabling the works discussed in this presentation.

 DESDEO is currently going through a complete overhaul, which will make it more usable and welcoming to wild
new ideas, including explainability.

The Multiobjective
Optimization Group

o

We regularly post about
our activities on LinkedIn!

Misitano, G., Saini, B. S., Afsar, B., Shavazipour, B., & Miettinen, K. (2021). DESDEO: The modular and open source framework for interactive multiobjective optimization. IEEE Access, 9, 148277-148295. JYU SINCE 1863. 10.7.2024 22
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