
Towards “DESDEO 2.0”
Recent developments in the restructuring of DESDEO

DEMO seminar, 12.3.2024
Giovanni Misitano



In this talk…

• Modelling of multiobjective optimization problems
• Parsing and evaluating problems
• Scalarization of problems
• Solving scalarized problems
• Implementing interactive scalarization-based methods
• The new structure of the project
• The new structure of the documentation

2



NOT in this talk…

• Evolutionary methods
• The web application programming interface (web-API)
• Databases
• User interfaces
• Visualization components
• Simulation or surrogate-based problems/methods

• …but in a future talk instead!

3



Modelling problems

• Problems are now at the heart of DESDEO.
• The problem model is implemented using pydantic models.

• Readily serializable, and they come with many other utilities, such as 
validation.

• Easy to implement in Python, easy to parse from and to JSON.
• JSON is an important format when implementing the API, database(s), 

and user interfaces, and will support many aspects found in interactive 
multiobjective optimization.

• All mathematical expressions are stored utilizing the MathJSON
format.

4



The problem model

• There is only one problem model in DESDEO now.
• The problem has a name and description, and a bunch of fields, 

which contain other models.

5



Constant

• Defines a constant utilized in the definition of a multiobjective 
optimization problem.

• A constant has a name, a symbol, and a value. These are all basic 
Python variables.

• Having constants is optional.

6



Variable

• Defines a variable utilized in the definition of a multiobjective 
optimization problem.

• A variable has a name, symbol, variable type, lower and upper 
bounds, and an initial value.

7



Objective

• Defines an objective function utilized in the definition of a 
problem.

• An Objective has a name, symbol, its function representation, 
sense (min/max), ideal and nadir values, and the objective’s type 
(analytical or discrete).

8



Constraint

• Defines a constraint function utilized in the definition of a 
problem.

• A constraint has a name, a symbol, type of constraint (EQ, LTE), its 
function definition (standard form g(x) =/< 0), and whether the 
constraint is linear or not.

9



Extra function

• Defines any functions that are utilized when defining other parts of 
a problem.

• Has a name, a symbol, and its function representation.

10



Scalarization function

• Defines any scalarizations of a problem.
• Has a name, a symbol, and its function representation.

11



Discrete representation

• Defines any discrete representations of a problem.
• Has variable values and their corresponding objective function 

values, and whether the representation is non-dominated or not.

12



The problem 
model once 

more

13



What is so nice about this?

• All the information available and related to the problem is now 
stored in just one place, i.e., the problem model.

• This model can be readily expanded without breaking any existing 
functionalities.

• One of the core principles is that everything that is needed to 
solve the problem, is available in this model. E.g., scalarizations.

• Another important aspect of the model is its immutability. This 
helps avoid a ton of bugs and keeps the user supplied definition of 
the problem “pure”. This last point is especially important when 
we want to solve the same problem multiple times and with 
different methods.

14



How are problems defined in practice
Variables

Function expressions

15



Objective functions

The problem

16



The JSON 
format

17



A closer look

18



Symbols

• As we saw, the function expressions can be supplied in a very 
understandable format.

• They could also be supplied in a MathJSON format:

• Whichever we choose, the symbols 
of the variables and functions are 
very important as they are utilized to 
reference one other.

19



Parsing and evaluating problems

• We have two kinds of parser thus far in DESDEO.
• From the DESDEO problem model to other formats/models.
• From other formats/models to the DESDEO problem model.*

• Currently, we can parse the DESDEO problem format to a polars-
based format, and to a pyomo-based format.

• We already saw an example of the other type of parser when we 
defined a problem in the previous example. That is, we can parse 
function expression from an infix notation to the MathJSON
format.

20



Evaluation

• Parsing and evaluation go together, but evaluators take the 
problem model a step further and implement general interfaces 
for different solver (i.e., optimizers) to be able to understand the 
problem format.

• We have three types of evaluators right now:
1. a polars-based evaluator,
2. a naïve discrete evaluator (proximal evaluator, a variant of the polars 

evaluator),
3. and a pyomo-based evaluator.

21



Common aspects among evaluators

• As said, the job of an evaluator is to accommodate various 
solvers.

• This means that when a solver tries to solve a problem and 
provides variables, the evaluator will take care that the problem is 
evaluated with the variables and the results of the evaluation are 
provided in a compatible format back to the solver.

• In some other cases, an evaluator needs to only provide a correct 
model for the solver, which is the case with the pyomo evaluator, 
for instance.

22



Common aspects among evaluators

• The order of evaluation is, however, universal and should be 
followed by all evaluators, current and future ones. This is:

1. Constant are evaluated first. E.g., their symbols are replaced by their 
corresponding value in all the function expressions found in a problem.

2. Then extra functions are evaluated with any provided decision variables, 
and their symbols are replaced in the rest of the problem formulation.

3. Then objective functions are evaluated and similarly replaced.
4. Then constraint functions are evaluated and replaced.
5. Lastly, any scalarization functions are evaluated.

23



Evaluation order

• In other words, definition wise, scalarization functions can 
depend on all the other symbols present in the problem.

• Likewise, constraints can depend on all symbols, but those of 
scalarization functions.

• Objective functions can depend on all symbols, expect those of 
constraints and scalarization functions.

• Etc…

24



Solvers (optimizers)

• Parsers and evaluators are mostly means to an end, and that end 
is to utilize solvers.

• DESDEO, however, does not currently implement any optimization 
routine per se, rather, it implements interfaces to existing solvers.

• These interfaces, as one might guess, heavily rely on the 
evaluators, which on the other hand rely on the parsers.

25



Solving a problem

• On the surface, once a problem has been defined, solving it is 
readily achieved: SolverResult:

26

N.B., evaluators always provide 
a "f_1_min" option!



Solvers

• Python-based solvers
• Scipy
• Nevergrad (WIP)

• Other solvers
• Coin-or-bonmin (mixed-integer, differentiable)
• Any solver available to pyomo (WIP, e.g., Gurobi, coin-or-branch, almost 

any AMPL-based solver)

• AMPL = A Mathematical Programming Language

27



Scalarization

• Solving a multiobjective optimization problem by optimizing one 
of its objectives is not very exciting.

• We can instead scalarize problems, which is very straightforward:

28



Scalarization

• Functions that add scalarizations to a problem will return at least 
a copy of the problem with the added scalarization and the 
symbol of the added scalarization.

• However, these functions can do much more, such as adding 
additional constraints to the problem, which is necessary in, e.g., 
the epsilon-constraint scalarization, or for example when defining 
the differentiable variant of the achievement scalarizing function.

29



Scalarization, another example

30



Scalarization-based methods

• We have all the tools to implement a plethora of the different 
interactive scalarization-based methods. I.e., “MCDM”, not 
population-based methods.

• We implement a method by implementing different functions that 
achieve the different steps required by a method.

• These functions are then combined into the method. 

31



Example: NAUTILUS Navigator

Calculate the iteration/navigation point: Solve for the reachable bounds:

Solve for the reachable solution: Calculate the distance to the front:

32



Example: NAUTILUS Navigator

• The four core functions can be used to implement NAUTILUS Navigator.
• Utilizing them, any other needed functions, such as initialization, and 

stepping (back and forward) are implemented.
• Functions pre-fixed with solve do some kind of optimization, while 

function pre-fixed with calculate do not optimize anything.
• Interaction is implemented in the web-API and frontend, where these 

functions, and their combinations, are leveraged to enable building 
interfaces that implement the method.

• Methods can still be implemented using the command line and 
notebooks as well, but in terms of interaction, assumptions are only 
made regarding the I/O of the functions implementing a method.

33



A more functional approach

• In contrast to the previous version of DESDEO, we have taken a 
much more functional approach when designing the framework, 
relying less on classes.

• As we saw, adding a scalarization function is implemented as a 
function that takes all gets all the information it needs to perform 
the scalarization as its arguments.

• Likewise, scalarization does not modify the original problem, 
instead it returns a modified copy of it with the added 
scalarization and other necessary elements.

34



A more functional approach

• In cases where storing an intermediate state makes sense, we 
have implemented classes, such is the case with the evaluators 
and parsers.

• With solvers, we have taken a factory-approach, where we 
implement a function that returns another specialized function, 
which has been setup to be able to solve the provided problem.

35



A more functional approach

• Otherwise, we try to be functional where we can.
• This comes with many advantages:

• less side-effects,
• purity (always same output with the same arguments),
• memoization (cache input-output pairs to functions),
• less bugs, and
• easier to test.

• Disadvantages:
• having to pass more arguments to functions,
• possible redundancies

36



A more functional approach

• But most importantly, a functional approach allows us to be truly 
modular.

• It does not take much imagination how different interactive 
methods can now be combined, switched from and to, and 
hybridized, when they are implanted as shown in the example.

• Many of the design decisions in the restructuring of DESDEO have 
been driven by the needs of the web-API (and interfaces), and 
modularity.

• This has led to a much simpler framework, that is yet much more 
capable than what we previously had.

37



So far in a nutshell

38



The structure of the project

• Previously, we had the core packages of DESDEO (desdeo-
problem, desdeo-tools, desdeo-mcdm, desdeo-emo) in their own 
packages and repositories.

• This made working on DESDEO a living nightmare. The original 
decision was driven by good intentions, but these intentions were 
far from reality.

• This approach also split the documentation, another living 
nightmare.

39



The structure of the project

• Still, having certain functionalities divided into different parts of 
the framework makes sense. And making this division based on 
the idea behind the core packages is still sensible.

• But instead as packages, we have desdeo-problem, -tools, -
mcdm, and –emo, as modules now. (and desdeo-webapi!)

• There is only a single DESDEO package, and consequently a single 
documentation as well.

40



Root of the 
project

Obs!



DESDEO



desdeo-
problem



The documentation

• Has been given a much higher priority.
• Is much more learning- and understanding-oriented.
• Much easier to write than previously.
• Follows (roughly) the Diataxis philosophy

44https://diataxis.fr/



Best to show rather than tell…

• Almost everything, and more, we have seen during this talk, is also 
present in the documentation.

• Utilized materials for MkDocs.

45



The minimum viable product

• Capabilities to deal with mixed-integer problems.
• Is there. Will be improved further.

• Functional interactive plots and UI. 
• Making constant progress.

• Implementations of interactive methods.
• Not many methods yet, but it is much, much easier to implement 

methods now.

• Getting archive/database to be functional independent of the 
method used
• Web-API stuff, being worked on.

46



The minimum viable product

• Documentation
• Is in a better shape than ever. Much easier to work on.

• Support for 2 types of users: registered users and guests
• Is worked on. We support even more types now.

• Scenarios.
• ?

• Old codes by previous members.
• ?

47



Before the release of 2.0

• Nothing implemented in the EMO side yet.
• Surrogate and simulation-based problems are not supported yet.
• The web-API and the database needs some work as well.
• More methods should be implemented.
• More functionalities, especially scalarization functions, should be 

implemented.
• More solver interfaces should be implanted.

48



Contributions are 
welcome!

49



Links

• DESDEO 2.0: https://github.com/industrial-optimization-
group/DESDEO/tree/desdeo2

• The new 2.0 documentation: 
https://desdeo.readthedocs.io/en/desdeo2/

• MathJSON: https://cortexjs.io/math-json/
• Pydantic: https://docs.pydantic.dev/latest/
• Polars: https://pola.rs/
• Pyomo: http://www.pyomo.org/
• COIN-OR: https://www.coin-or.org/
• Materials for MkDocs: https://squidfunk.github.io/mkdocs-material/

50

https://github.com/industrial-optimization-group/DESDEO/tree/desdeo2
https://github.com/industrial-optimization-group/DESDEO/tree/desdeo2
https://desdeo.readthedocs.io/en/desdeo2/
https://cortexjs.io/math-json/
https://docs.pydantic.dev/latest/
https://pola.rs/
http://www.pyomo.org/
https://www.coin-or.org/
https://squidfunk.github.io/mkdocs-material/

	Slide 1: Towards “DESDEO 2.0”
	Slide 2: In this talk… 
	Slide 3: NOT in this talk…
	Slide 4: Modelling problems
	Slide 5: The problem model
	Slide 6: Constant
	Slide 7: Variable
	Slide 8: Objective
	Slide 9: Constraint
	Slide 10: Extra function
	Slide 11: Scalarization function
	Slide 12: Discrete representation
	Slide 13: The problem model once more
	Slide 14: What is so nice about this?
	Slide 15: How are problems defined in practice
	Slide 16
	Slide 17: The JSON format
	Slide 18: A closer look
	Slide 19: Symbols
	Slide 20: Parsing and evaluating problems
	Slide 21: Evaluation
	Slide 22: Common aspects among evaluators
	Slide 23: Common aspects among evaluators
	Slide 24: Evaluation order
	Slide 25: Solvers (optimizers)
	Slide 26: Solving a problem
	Slide 27: Solvers
	Slide 28: Scalarization
	Slide 29: Scalarization
	Slide 30: Scalarization, another example
	Slide 31: Scalarization-based methods 
	Slide 32: Example: NAUTILUS Navigator
	Slide 33: Example: NAUTILUS Navigator
	Slide 34: A more functional approach
	Slide 35: A more functional approach
	Slide 36: A more functional approach
	Slide 37: A more functional approach
	Slide 38: So far in a nutshell
	Slide 39: The structure of the project
	Slide 40: The structure of the project
	Slide 41: Root of the project
	Slide 42: DESDEO
	Slide 43: desdeo-problem
	Slide 44: The documentation
	Slide 45: Best to show rather than tell…
	Slide 46: The minimum viable product
	Slide 47: The minimum viable product 
	Slide 48: Before the release of 2.0 
	Slide 49: Contributions are welcome!
	Slide 50: Links

